Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-34893856

ABSTRACT

Domestic sheep and their wild relatives harbor substantial genetic variants that can form the backbone of molecular breeding, but their genome landscapes remain understudied. Here, we present a comprehensive genome resource for wild ovine species, landraces and improved breeds of domestic sheep, comprising high-coverage (∼16.10×) whole genomes of 810 samples from 7 wild species and 158 diverse domestic populations. We detected, in total, ∼121.2 million single nucleotide polymorphisms, ∼61 million of which are novel. Some display significant (P < 0.001) differences in frequency between wild and domestic species, or are private to continent-wide or individual sheep populations. Retained or introgressed wild gene variants in domestic populations have contributed to local adaptation, such as the variation in the HBB associated with plateau adaptation. We identified novel and previously reported targets of selection on morphological and agronomic traits such as stature, horn, tail configuration, and wool fineness. We explored the genetic basis of wool fineness and unveiled a novel mutation (chr25: T7,068,586C) in the 3'-UTR of IRF2BP2 as plausible causal variant for fleece fiber diameter. We reconstructed prehistorical migrations from the Near Eastern domestication center to South-and-Southeast Asia and found two main waves of migrations across the Eurasian Steppe and the Iranian Plateau in the Early and Late Bronze Ages. Our findings refine our understanding of genome variation as shaped by continental migrations, introgression, adaptation, and selection of sheep.


Subject(s)
Genome , Sheep, Domestic , Animals , Asia , Europe , Genetic Variation , Iran , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Sheep/genetics , Sheep, Domestic/genetics
2.
Arch Anim Breed ; 64(1): 91-102, 2021.
Article in English | MEDLINE | ID: mdl-34084907

ABSTRACT

The aim of this study was to analyze the genetic structure of the casein cluster in eight selection lines of the Holstein Friesian (HF), German Simmental (GS) and German Black Pied cattle ("Deutsches Schwarzbuntes Niederungsrind", DSN) breeds. A total of 2962 milk samples were typed at α s 1 -casein ( α s 1 -CN), ß -casein ( ß -CN), α s 2 -casein ( α s 2 -CN) and κ -casein ( κ -CN) loci using isoelectric focusing. The number of alleles per locus ranged from one ( α s 2 -CN) to five ( ß -CN), and the average expected heterozygosity and polymorphic information content of all loci were 0.33 and 0.27, respectively. The unrooted dendrogram revealed that the selection lines of the endangered DSN breed were clearly separated from the HF and GS breeds due to their predominance of the ß -CN A1 allele and the comprehensive haplotype BA1A (in the abbreviation of α s 1 - ß - κ -CN). Temporal changes in allele distributions indicated decreasing genetic diversity at the casein loci, explaining the moderate level of genetic differentiation among selection lines (7.1 %). The variability of the casein should be exploited in future using breeding programs to select genetic lines for specific protein production in bovine milk but also to preserve biodiversity.

3.
Mol Biol Evol ; 38(3): 838-855, 2021 03 09.
Article in English | MEDLINE | ID: mdl-32941615

ABSTRACT

How animals, particularly livestock, adapt to various climates and environments over short evolutionary time is of fundamental biological interest. Further, understanding the genetic mechanisms of adaptation in indigenous livestock populations is important for designing appropriate breeding programs to cope with the impacts of changing climate. Here, we conducted a comprehensive genomic analysis of diversity, interspecies introgression, and climate-mediated selective signatures in a global sample of sheep and their wild relatives. By examining 600K and 50K genome-wide single nucleotide polymorphism data from 3,447 samples representing 111 domestic sheep populations and 403 samples from all their seven wild relatives (argali, Asiatic mouflon, European mouflon, urial, snow sheep, bighorn, and thinhorn sheep), coupled with 88 whole-genome sequences, we detected clear signals of common introgression from wild relatives into sympatric domestic populations, thereby increasing their genomic diversities. The introgressions provided beneficial genetic variants in native populations, which were significantly associated with local climatic adaptation. We observed common introgression signals of alleles in olfactory-related genes (e.g., ADCY3 and TRPV1) and the PADI gene family including in particular PADI2, which is associated with antibacterial innate immunity. Further analyses of whole-genome sequences showed that the introgressed alleles in a specific region of PADI2 (chr2: 248,302,667-248,306,614) correlate with resistance to pneumonia. We conclude that wild introgression enhanced climatic adaptation and resistance to pneumonia in sheep. This has enabled them to adapt to varying climatic and environmental conditions after domestication.


Subject(s)
Adaptation, Biological/genetics , Disease Resistance/genetics , Genetic Introgression , Sheep/genetics , Animals , Biological Evolution , Climate Change , Genetic Variation , Phylogeography , Pneumonia/immunology , Sheep/immunology
4.
J Anim Sci ; 98(10)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32845979

ABSTRACT

The objectives of this study were to investigate milk casein polymorphisms in dams and to determine the impacts of maternal casein genotypes on growth traits of their sucking calves. Milk samples from 433 dams of the breeds German Angus (GA) and German Simmental (GS) were typed at the milk protein loci α s1-casein (αs1-CN), ß-casein (ß-CN), α s2-casein (αs2-CN), and κ-casein (κ-CN) via isoelectric focusing. Associations between casein genotypes in maternal milk with growth traits of their 1,872 calves were analyzed until the age of weaning using linear mixed models, considering either genotypes of individual casein loci (model 1) or composite α s1-ß-α s2-κ-CN genotypes within the casein cluster (model 2). Besides environmental effects such as sex, age of the dam, and calving year-season, genetic effects (breed group and maternal and paternal effects) were considered in statistical models. The composite casein genotype BBǀA2A2ǀAAǀAB (order of genes on bovine chromosome 6: α s1-ǀß-ǀα s2-ǀκ-CN) was associated with greater average daily weight gains (ADG) and heavier age-adjusted weaning weights (WW) of calves (P < 0.05). The effects of composite genotypes on birth weight of calves were similar (P > 0.05; model 2). With regard to individual casein loci, greater ADG and WW were observed for calves from dams with the genotypes κ-CN BB and α s1-CN BB, respectively (P < 0.05; model 1). Age-adjusted WW was largest for calves from dams carrying the κ-CN genotype BB (215 kg) compared with calves representing the maternal AB and AA genotypes (both 204 kg). Results from the present study suggested selectable casein genotypes due to their nutritional value of milk (value in terms of offspring performances), offering new perspectives for breeding strategies in beef cattle to improve preweaning calf performance.


Subject(s)
Cattle/genetics , Milk Proteins/genetics , Milk/chemistry , Polymorphism, Genetic , Animals , Birth Weight , Breeding , Caseins/genetics , Cattle/growth & development , Female , Genotype , Milk Proteins/metabolism , Phenotype , Weaning , Weight Gain
5.
Curr Biol ; 30(20): 4085-4095.e6, 2020 10 19.
Article in English | MEDLINE | ID: mdl-32822607

ABSTRACT

The domestication and subsequent global dispersal of livestock are crucial events in human history, but the migratory episodes during the history of livestock remain poorly documented [1-3]. Here, we first developed a set of 493 novel ovine SNPs of the male-specific region of Y chromosome (MSY) by genome mapping. We then conducted a comprehensive genomic analysis of Y chromosome, mitochondrial DNA, and whole-genome sequence variations in a large number of 595 rams representing 118 domestic populations across the world. We detected four different paternal lineages of domestic sheep and resolved, at the global level, their paternal origins and differentiation. In Northern European breeds, several of which have retained primitive traits (e.g., a small body size and short or thin tails), and fat-tailed sheep, we found an overrepresentation of MSY lineages y-HC and y-HB, respectively. Using an approximate Bayesian computation approach, we reconstruct the demographic expansions associated with the segregation of primitive and fat-tailed phenotypes. These results together with archaeological evidence and historical data suggested the first expansion of early domestic hair sheep and the later expansion of fat-tailed sheep occurred ∼11,800-9,000 years BP and ∼5,300-1,700 years BP, respectively. These findings provide important insights into the history of migration and pastoralism of sheep across the Old World, which was associated with different breeding goals during the Neolithic agricultural revolution.


Subject(s)
DNA, Mitochondrial/genetics , Genome/genetics , Polymorphism, Single Nucleotide/genetics , Sheep, Domestic/genetics , Y Chromosome/genetics , Animals , Breeding , Cell Lineage/genetics , Chromosome Mapping , Genetic Variation/genetics , Male , Mitochondria/genetics , Phenotype , Phylogeny , Sheep , Sheep, Domestic/classification , Whole Genome Sequencing
6.
Nat Commun ; 11(1): 2815, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32499537

ABSTRACT

Understanding the genetic changes underlying phenotypic variation in sheep (Ovis aries) may facilitate our efforts towards further improvement. Here, we report the deep resequencing of 248 sheep including the wild ancestor (O. orientalis), landraces, and improved breeds. We explored the sheep variome and selection signatures. We detected genomic regions harboring genes associated with distinct morphological and agronomic traits, which may be past and potential future targets of domestication, breeding, and selection. Furthermore, we found non-synonymous mutations in a set of plausible candidate genes and significant differences in their allele frequency distributions across breeds. We identified PDGFD as a likely causal gene for fat deposition in the tails of sheep through transcriptome, RT-PCR, qPCR, and Western blot analyses. Our results provide insights into the demographic history of sheep and a valuable genomic resource for future genetic studies and improved genome-assisted breeding of sheep and other domestic animals.


Subject(s)
Animal Husbandry/methods , Animals, Wild/genetics , Platelet-Derived Growth Factor/metabolism , Sheep, Domestic/genetics , Alleles , Animals , Breeding , Female , Gene Frequency , Genetic Variation , Genetics , Genomics , Genotype , High-Throughput Nucleotide Sequencing , Linkage Disequilibrium , Mutation , Phenotype , Polymorphism, Single Nucleotide , Selection, Genetic , Sequence Analysis, DNA , Sheep , Species Specificity , Whole Genome Sequencing
7.
Front Genet ; 10: 748, 2019.
Article in English | MEDLINE | ID: mdl-31555318

ABSTRACT

The structure of casein genes has been fully understood in llamas, whereas in other camelids, this information is still incomplete. In fact, structure and polymorphisms have been identified in three (CSN1S1, αs1-CN; CSN2, ß-CN; CSN3, κ-CN) out of four casein genes, whereas controversial information is available for the CSN1S2 (αs2-CN) in terms of structure and genetic diversity. Data from the genome analysis, whose assembly is available for feral camel, Bactrian, dromedary, and alpaca, can contribute to a better knowledge. However, a majority of the scaffolds available in GenBank are still unplaced, and the comparative annotation is often inaccurate or lacking.Therefore, the aims of this study are 1) to perform a comparative genome analysis and synthesize the literature data on camelids casein cluster; 2) to analyze the casein variability in two dromedary populations (Sudanese and Nigerian) using polymorphisms at CSN1S1 (c.150G > T), CSN2 (g.2126A > G), and CSN3 (g.1029T > C); and 3) to physically map the casein cluster in alpaca. Exon structures, gene and intergenic distances, large insertion/deletion events, SNPs, and microsatellites were annotated. In all camelids, the CSN1S2 consists of 17 exons, confirming the structure of llama CSN1S2 gene. The comparative analysis of the complete casein cluster (∼190kb) shows 12,818 polymorphisms. The most polymorphic gene is the CSN1S1 (99 SNPs in Bactrian vs. 248 in dromedary vs. 626 in alpaca). The less polymorphic is the CSN3 in the Bactrian (22 SNPs) and alpaca (301 SNPs), whereas it is the CSN1S2 in dromedary (79 SNPs). In the two investigated dromedary populations, the allele frequencies for the three markers are slightly different: the allele C at CSN1S1 is very rare in Nigerian (0.054) and Sudanese dromedaries (0.094), whereas the frequency of the allele G at CSN2 is almost inverted. Haplotype analysis evidenced GAC as the most frequent (0.288) and TGC as the rarest (0.005). The analysis of R-banding metaphases hybridized with specific probes mapped the casein genes on chromosome 2q21 in alpaca. These data deepen the information on the structure of the casein cluster in camelids and add knowledge on the cytogenetic map and haplotype variability.

8.
PLoS One ; 13(4): e0195407, 2018.
Article in English | MEDLINE | ID: mdl-29608621

ABSTRACT

Oxytocin is a neurohypophysial peptide linked to a wide range of biological functions, including milk ejection, temperament and reproduction. Aims of the present study were a) the characterization of the OXT (Oxytocin-neurophysin I) gene and its regulatory regions in Old and New world camelids; b) the investigation of the genetic diversity and the discovery of markers potentially affecting the gene regulation. On average, the gene extends over 814 bp, ranging between 825 bp in dromedary, 811 bp in Bactrian and 810 bp in llama and alpaca. Such difference in size is due to a duplication event of 21 bp in dromedary. The main regulatory elements, including the composite hormone response elements (CHREs), were identified in the promoter, whereas the presence of mature microRNAs binding sequences in the 3'UTR improves the knowledge on the factors putatively involved in the OXT gene regulation, although their specific biological effect needs to be still elucidated. The sequencing of genomic DNA allowed the identification of 17 intraspecific polymorphisms and 69 nucleotide differences among the four species. One of these (MF464535:g.622C>G) is responsible, in alpaca, for the loss of a consensus sequence for the transcription factor SP1. Furthermore, the same SNP falls within a CpG island and it creates a new methylation site, thus opening future possibilities of investigation to verify the influence of the novel allelic variant in the OXT gene regulation. A PCR-RFLP method was setup for the genotyping and the frequency of the allele C was 0.93 in a population of 71 alpacas. The obtained data clarify the structure of OXT gene in domestic camelids and add knowledge to the genetic variability of a genomic region, which has received little investigation so far. These findings open the opportunity for new investigations, including association studies with productive and reproductive traits.


Subject(s)
Camelids, New World/genetics , Camelus/genetics , Neurophysins/genetics , Animals , Animals, Domestic/genetics , Base Sequence , Computational Biology , CpG Islands , DNA Methylation/genetics , Genetic Variation , Genotyping Techniques , Molecular Sequence Data , Polymorphism, Genetic , Promoter Regions, Genetic , Regulatory Elements, Transcriptional , Ruminants/genetics , Species Specificity
9.
Vet Clin Pathol ; 47(2): 233-245, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29505117

ABSTRACT

BACKGROUND: Literature regarding the impact of age and breed size on clinical biochemical measurands in rabbits is scarce. OBJECTIVES: We aimed to establish clinical biochemical measurand RIs for rabbits bred and kept under standard conditions and to evaluate the impact of gender, age, and breed size on the results using a Nova CRT8 analyzer (Nova Biomedical GmbH) and an ABX Pentra 400 analyzer (ABX Horiba, Axonlab). METHODS: Serum samples were available from 122 adult rabbits (56 males, 66 females) of 10 different breeds and crossbreds with a mean age of 264 ± 21 days. The impact of age was evaluated by sampling 48 rabbits at weaning (8 weeks of age) and when they reached adulthood. RESULTS: Significantly higher median values were obtained for ALT, glutamate dehydrogenase (GLDH), and potassium in adult males compared with adult female rabbits. Total bilirubin, cholesterol, creatinine, and urea were significantly higher in adult females than adult males. Juvenile animals at weaning revealed significantly higher median values for ALP, cholesterol, GGT, GLDH, glucose, phosphate, and triglycerides compared with their adulthood values. In contrast, lower median albumin, ALT, chloride, creatinine, globulin, ionized calcium, magnesium, potassium, total protein, urea, and calcium-phosphate ratios were seen at the time of weaning compared with adulthood values. Significantly lower median CK, creatinine, and ALT were found in dwarf/small rabbit breeds compared with intermediate/large breeds. CONCLUSIONS: These RIs are especially useful for rabbit production and experimental studies. Age should be considered when evaluating clinical biochemical measurands. Creatinine, CK, and ALT are affected by organ mass.


Subject(s)
Blood Chemical Analysis/veterinary , Rabbits/blood , Animals , Female , Male , Reference Values , Species Specificity
10.
Sci Rep ; 6: 34781, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27698378

ABSTRACT

The natural occurrence of live hybrid offsprings between sheep and goats has been documented in literature, however all the studies have reported the mating of goats with rams, whereas the reciprocal cross was never documented. This study reports on a very rare case of interspecies hybridization occurred between a ewe (2n = 54, XX) and a buck (2n = 60, XY). The hybrid, born in a German flock under natural conditions, is characterised by an intermediate karyotype (2n = 57, XX). The CBA-banding has shown 3 metacentric and 54 acrocentric chromosomes, whereas the GTG- and RBA-banding have revealed that the autosomes involved in the hybrid combination were CHI1, 3; CHI2, 8 and CHI5, 11 corresponding to the metacentric chromosomes OAR1, OAR2 and OAR3. A tri-colour FISH using chromosome paintings and BAC probes has validated this arrangement. A further FISH analysis has been carried out to analyse the telomeres, which showed a normal structure. Nucleolus organiser-bearing chromosomes were identified as pairs OAR1p(CHI3), OAR2q(CHI2), OAR3q(CHI5), OAR4(CHI4) and OAR25(CHI28), and nuclear associations were found. Sex chromosomes were correctly arranged. The odd number of the karyotype might be responsible for a reduced fertility as consequence of the incorrect chromosomal pairing and/or segregation during the meiosis.


Subject(s)
Chromosome Painting/methods , Goats/genetics , Karyotyping/methods , Sheep/genetics , Animals , Chromosome Aberrations , Female , Karyotype , Male , Sex Chromosomes , Sexual Behavior, Animal
11.
Berl Munch Tierarztl Wochenschr ; 129(7-8): 269-81, 2016.
Article in English | MEDLINE | ID: mdl-27529988

ABSTRACT

Leucism is characterized by a complete or partial white skin and hair in combination with pigmented irides, which can be vivid blue or heterochromatic. This is due to a complete or partial lack of melanocytes. The underlying pathogenesis is a disturbed emigration or differentiation of neural crest-derived cells. Therefore, leucistic phenotypes can be associated with defects, which mainly impair sensory organs and nerves. In humans, a well-known example is the Waardenburg syndrome. Leucism-associated disorders were also described in mouse, rat, hamster, rabbit, mink, cat, dog, pig, sheep, llama, alpaca, cattle and horse. In some of these species already identified causal mutations affect the genes EDN3, EDNRB, KIT, MITF, PAX3, SILV and SOX10. Defect alleles represent different types of genetic variation, ranging from single nucleotide substitutions up to larger chromosomal deletions. Some of the defect alleles produce desired coat color patterns. In some but not all cases, available genetic tests enable breeders to avoid production of animals affected by a leucism-associated disorder.


Subject(s)
Chromosome Deletion , Point Mutation , Waardenburg Syndrome/veterinary , Animals , Cats , Cattle , Dogs , Enteric Nervous System/abnormalities , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/veterinary , Horses , Humans , Mice , Neural Crest/embryology , Rabbits , Rats , Sheep , Waardenburg Syndrome/genetics , Waardenburg Syndrome/prevention & control
12.
Trop Anim Health Prod ; 48(5): 879-87, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26922739

ABSTRACT

Milk samples of 193 camels (Camelus dromedarius) from different regions of Sudan were screened for casein variability by isoelectric focusing. Kappa-casein and beta-casein were monomorphic, whereas three protein patterns named αs1-casein A, C, and D were identified. The major allele A revealed frequencies of 0.79 (Lahaoi), 0.75 (Shanbali), 0.90 (Arabi Khali), and 0.88 (Arabi Gharbawi) in the different ecotypes. CSN1S1*C shows a single G > T nucleotide substitution in the exon 5, leading to a non-synonymous amino acid exchange (p.Glu30 > Asp30) in comparison to CSN1S1*A and D. At cDNA level, no further single nucleotide polymorphisms could be identified in CSN1S1* A, C, and D, whereas the variants CSN1S1*A and CSN1S1*C are characterized by missing of exon 18 compared to the already described CSN1S1*B, as consequence of DNA insertion of 11 bp at intron 17 which alter the pre-mRNA spliceosome machinery. A polymerase chain-restriction fragment length polymorphism method (PCR-RFLP) was established to type for G > T nucleotide substitution at genomic DNA level. The occurrence and differences of IgE-binding epitopes and bioactive peptides between αs1-casein A, C, and D after digestion were analyzed in silico. The amino acid substitutions and deletion affected the arising peptide pattern and thus modifications between IgE-binding epitopes and bioactive peptides of the variants were found. The allergenic potential of these different peptides will be investigated by microarray immunoassay using sera from milk-sensitized individuals, as it was already demonstrated for bovine αs1-casein variants.


Subject(s)
Allergens/chemistry , Camelus/physiology , Caseins/chemistry , Epitopes/genetics , Milk/chemistry , Alleles , Allergens/genetics , Amino Acid Substitution , Animals , Caseins/metabolism , Immunoassay , Peptides , Point Mutation , Polymerase Chain Reaction , Polymorphism, Genetic , Polymorphism, Restriction Fragment Length , Sudan
13.
Methods Mol Biol ; 1352: 279-96, 2016.
Article in English | MEDLINE | ID: mdl-26490483

ABSTRACT

Immunoglobulin E epitope mapping of milk proteins reveals important information about their immunologic properties. Genetic variants of αS1-casein, one of the major allergens in bovine milk, are until now not considered when discussing the allergenic potential. Here we describe the complete procedure to assess the allergenicity of αS1-casein variants B and C, which are frequent in most breeds, starting from milk with identification and purification of casein variants by isoelectric focusing (IEF) and anion-exchange chromatography, followed by in vitro gastrointestinal digestion of the casein variants, identification of the resulting peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), in silico analysis of the variant-specific peptides as allergenic epitopes, and determination of their IgE-binding properties by microarray immunoassay with cow's milk allergic human sera.


Subject(s)
Caseins/genetics , Caseins/immunology , Genetic Variation , Immunoassay/methods , Peptide Fragments/immunology , Protein Array Analysis/methods , Amino Acid Substitution , Animals , Caseins/metabolism , Cattle , Chemical Precipitation , Chromatography, Ion Exchange , Duodenum/metabolism , Epitope Mapping/methods , Gastric Mucosa/metabolism , Humans , Immunoglobulin E/immunology , Isoelectric Focusing , Milk/chemistry , Peptide Fragments/chemistry , Peptide Fragments/isolation & purification , Proteolysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
14.
PLoS One ; 10(9): e0137684, 2015.
Article in English | MEDLINE | ID: mdl-26351857

ABSTRACT

Lactating sows have been shown to develop typical signs of an inflammatory condition in the liver during the transition from pregnancy to lactation. Hepatic inflammation is considered critical due to the induction of an acute phase response and the activation of stress signaling pathways like the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR), both of which impair animal's health and performance. Whether ER stress-induced UPR is also activated in the liver of lactating sows and whether dietary fish oil as a source of anti-inflammatory effects n-3 PUFA is able to attenuate hepatic inflammation and ER stress-induced UPR in the liver of sows is currently unknown. Based on this, two experiments with lactating sows were performed. The first experiment revealed that ER stress-induced UPR occurs also in the liver of sows during lactation. This was evident from the up-regulation of a set of genes regulated by the UPR and numerically increased phosphorylation of the ER stress-transducer PERK and PERK-mediated phosphorylation of eIF2α and IκB. The second experiment showed that fish oil inhibits ER stress-induced UPR in the liver of lactating sows. This was demonstrated by decreased mRNA levels of a number of UPR-regulated genes and reduced phosphorylation of PERK and PERK-mediated phosphorylation of eIF2α and IκB in the liver of the fish oil group. The mRNA levels of various nuclear factor-κB-regulated genes encoding inflammatory mediators and acute phase proteins in the liver of lactating sows were also reduced in the fish oil group. In line with this, the plasma levels of acute phase proteins were reduced in the fish oil group, although differences to the control group were not significant. In conclusion, ER stress-induced UPR is present in the liver of lactating sows and fish oil is able to inhibit inflammatory signaling pathways and ER stress-induced UPR in the liver.


Subject(s)
Endoplasmic Reticulum Stress , Fish Oils/metabolism , Lactation , Liver/metabolism , Signal Transduction , Animals , C-Reactive Protein/metabolism , Endoplasmic Reticulum Stress/drug effects , Eukaryotic Initiation Factor-2/metabolism , Female , Fish Oils/pharmacology , Gene Expression Profiling , Gene Expression Regulation , I-kappa B Proteins/metabolism , Inflammasomes/genetics , Inflammasomes/metabolism , Liver/drug effects , Muscle, Skeletal/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , RNA, Messenger/genetics , Signal Transduction/drug effects , Swine , Unfolded Protein Response/genetics , eIF-2 Kinase/metabolism
15.
Arch Anim Nutr ; 69(5): 399-410, 2015.
Article in English | MEDLINE | ID: mdl-26305387

ABSTRACT

In rodents, forced activation of hepatic peroxisome proliferator-activated receptor α (PPARα) by administration of exogenous PPARα activators during lactation leads to a reduction of milk triacylglycerol (TAG) production. Herein, we investigated whether a negative energy balance (NEB) induced by feed restriction (about 18% lower feed and energy intake) during lactation by increasing the release of fatty acids, which act as PPARα agonists, causes a disruption of hepatic lipid metabolism and thereby impairs milk TAG production in sows. Nutrient and energy content of the milk on day 20 of lactation and gains of litters during the first 14 d and the whole 21 d suckling period did not differ between Control and feed-restricted sows. The mRNA concentrations of several sterol regulatory element-binding protein target genes involved in lipid synthesis in the liver and the plasma concentration of TAG were reduced in the feed-restricted sows, whereas the mRNA concentrations of PPARα target genes involved in fatty acid oxidation in liver and skeletal muscle were not different between groups. In conclusion, it was shown that an NEB during lactation does not adversely affect milk composition and gains of litters, despite inhibiting hepatic expression of genes involved in lipid synthesis and reducing plasma TAG concentration. The finding that PPARα target genes involved in fatty acid utilisation in liver and muscle of sows are not induced by the NEB during lactation may explain that fatty acid availability in the mammary gland is sufficient to maintain milk TAG production and to allow normal litter gain.


Subject(s)
Energy Intake , Energy Metabolism , Lipid Metabolism , Sus scrofa/physiology , Animal Feed/analysis , Animals , Diet/veterinary , Female , Lactation , Liver/metabolism , Milk , PPAR alpha/genetics , PPAR alpha/metabolism , Random Allocation , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism , Sus scrofa/genetics , Sus scrofa/growth & development
16.
Arch Anim Nutr ; 69(5): 411-23, 2015.
Article in English | MEDLINE | ID: mdl-26305388

ABSTRACT

High-producing sows develop typical signs of an inflammatory condition and endoplasmic reticulum (ER) stress in the liver during lactation. At present, it is unknown whether a negative energy balance (NEB) is causative for this. Therefore, an experiment with lactating sows, which were either restricted in their feed intake to 82% of their energy requirement (Group FR) or were fed to meet their energy requirement (Control), was performed and the effect on ER stress-induced unfolded protein response (UPR), nuclear factor kappa B (NF-κB), nuclear factor E2-related factor 2 (Nrf2) and NOD-like receptor P3 (NLRP3) inflammasome signalling in the liver was evaluated. Relative mRNA concentrations of several genes involved in ER stress-induced UPR, NF-κB and NLRP3 inflammasome signalling were reduced in the liver of Group FR compared to the Control group. Plasma concentrations of haptoglobin and C-reactive protein were 13% and 37%, respectively, lower in Group FR than in the Control group, but these differences were not significant. In conclusion, feed restriction in lactating sows inhibits pro-inflammatory and ER stress signalling pathways in the liver, which suggests that not the NEB per se is causative for inflammation and ER stress induction in the liver of lactating sows. Rather it is likely that ER stress during lactation is the consequence of the presence of potent pro-inflammatory and ER stress-inducing stimuli, such as cytokines, reactive oxygen species and microbial components, which enter the circulation as a result of infectious diseases that frequently occur in sows after farrowing.


Subject(s)
Animal Feed/analysis , Endoplasmic Reticulum Stress , Energy Metabolism , Inflammation/immunology , Signal Transduction , Swine Diseases/immunology , Animals , Caloric Restriction , Diet/veterinary , Female , Inflammation/etiology , Inflammation/metabolism , Lactation , Liver/metabolism , Muscle, Skeletal/metabolism , Swine , Swine Diseases/etiology , Swine Diseases/metabolism
17.
PLoS One ; 10(4): e0124963, 2015.
Article in English | MEDLINE | ID: mdl-25923814

ABSTRACT

In the present paper, we report for the first time the characterization of llama (Lama glama) caseins at transcriptomic and genetic level. A total of 288 casein clones transcripts were analysed from two lactating llamas. The most represented mRNA populations were those correctly assembled (85.07%) and they encoded for mature proteins of 215, 217, 187 and 162 amino acids respectively for the CSN1S1, CSN2, CSN1S2 and CSN3 genes. The exonic subdivision evidenced a structure made of 21, 9, 17 and 6 exons for the αs1-, ß-, αs2- and κ-casein genes respectively. Exon skipping and duplication events were evidenced. Two variants A and B were identified in the αs1-casein gene as result of the alternative out-splicing of the exon 18. An additional exon coding for a novel esapeptide was found to be cryptic in the κ-casein gene, whereas one extra exon was found in the αs2-casein gene by the comparison with the Camelus dromedaries sequence. A total of 28 putative phosphorylated motifs highlighted a complex heterogeneity and a potential variable degree of post-translational modifications. Ninety-six polymorphic sites were found through the comparison of the lama casein cDNAs with the homologous camel sequences, whereas the first description and characterization of the 5'- and 3'-regulatory regions allowed to identify the main putative consensus sequences involved in the casein genes expression, thus opening the way to new investigations -so far- never achieved in this species.


Subject(s)
Camelids, New World/genetics , Caseins/genetics , RNA, Messenger/biosynthesis , Regulatory Sequences, Nucleic Acid/genetics , Animals , Camelus/genetics , Caseins/biosynthesis , Evolution, Molecular , Exons , Female , Gene Expression Regulation/genetics , Goats/genetics , Humans , Lactation/genetics , Milk , Protein Processing, Post-Translational/genetics , Sequence Homology
18.
BMC Vet Res ; 11: 54, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25888880

ABSTRACT

BACKGROUND: In rats, it has been observed that treatment with activators of peroxisome proliferator-activated receptor α (PPARα) disturbs metabolic adaptations during lactation, which in turn lead to a reduction of milk fat content and gains of litters during the suckling period. It has not yet been investigated whether agonists of PPARα are impairing milk production of lactating sows in a similar manner as in rats. Therefore, the present study aimed to investigate the effect of treatment with clofibrate, a strong synthetic agonist of PPARα, on milk composition and litter gains in lactating sows. RESULTS: Twenty lactating sows received either a basal diet (control group) or the same diet with supplementation of 2 g of clofibrate per kg of diet (clofibrate group). In the clofibrate group, mRNA concentrations of various PPARα target genes involved in fatty acid utilization in liver and skeletal muscle were moderately up-regulated. Fat and energy content of the milk and gains of litters during the suckling period were not different between the control group and the clofibrate group. CONCLUSION: It is shown that treatment with clofibrate induces only a moderate up-regulation of PPARα target genes in liver and muscle of lactating sows and in turn might have limited effect on whole body fatty acid utilization. This may be the reason why clofibrate treatment did not influence milk fat content and gains of litters during the suckling period. Thus, the present study indicates that activation of PPARα induced either by native agonists such as dietary polyunsaturated fatty acids or a by negative energy balance might be largely uncritical in lactating sows with respect to milk production and litter gains in lactating sows.


Subject(s)
Animals, Newborn/growth & development , Clofibrate/pharmacology , Fats/analysis , Lactation/drug effects , Milk/chemistry , PPAR alpha/agonists , Animals , Dietary Supplements , Fatty Acids, Nonesterified/blood , Female , Milk Proteins/analysis , Swine , Triglycerides/blood , Weight Gain/drug effects
19.
BMC Genet ; 15: 47, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24739206

ABSTRACT

BACKGROUND: Descendants from the extinct aurochs (Bos primigenius), taurine (Bos taurus) and zebu cattle (Bos indicus) were domesticated 10,000 years ago in Southwestern and Southern Asia, respectively, and colonized the world undergoing complex events of admixture and selection. Molecular data, in particular genome-wide single nucleotide polymorphism (SNP) markers, can complement historic and archaeological records to elucidate these past events. However, SNP ascertainment in cattle has been optimized for taurine breeds, imposing limitations to the study of diversity in zebu cattle. As amplified fragment length polymorphism (AFLP) markers are discovered and genotyped as the samples are assayed, this type of marker is free of ascertainment bias. In order to obtain unbiased assessments of genetic differentiation and structure in taurine and zebu cattle, we analyzed a dataset of 135 AFLP markers in 1,593 samples from 13 zebu and 58 taurine breeds, representing nine continental areas. RESULTS: We found a geographical pattern of expected heterozygosity in European taurine breeds decreasing with the distance from the domestication centre, arguing against a large-scale introgression from European or African aurochs. Zebu cattle were found to be at least as diverse as taurine cattle. Western African zebu cattle were found to have diverged more from Indian zebu than South American zebu. Model-based clustering and ancestry informative markers analyses suggested that this is due to taurine introgression. Although a large part of South American zebu cattle also descend from taurine cows, we did not detect significant levels of taurine ancestry in these breeds, probably because of systematic backcrossing with zebu bulls. Furthermore, limited zebu introgression was found in Podolian taurine breeds in Italy. CONCLUSIONS: The assessment of cattle diversity reported here contributes an unbiased global view to genetic differentiation and structure of taurine and zebu cattle populations, which is essential for an effective conservation of the bovine genetic resources.


Subject(s)
Amplified Fragment Length Polymorphism Analysis , Cattle/genetics , Genetic Variation , Genetics, Population , Animals , Breeding , Cluster Analysis , Conservation of Natural Resources , Genetic Markers , Genotype , Models, Genetic
20.
Acta Vet Scand ; 55: 24, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23497718

ABSTRACT

BACKGROUND: Convincing evidence exist that carnitine synthesis and uptake of carnitine into cells is regulated by peroxisome proliferator-activated receptor α (PPARA), a transcription factor which is physiologically activated during fasting or energy deprivation. Sows are typically in a negative energy balance during peak lactation. We investigated the hypothesis that genes involved in carnitine synthesis and uptake in the liver of sows are up-regulated during peak lactation. FINDINGS: Transcript levels of several PPARα target genes involved in fatty acid uptake (FABP4, SLC25A20), fatty acid oxidation (ACOX1, CYP4A24) and ketogenesis (HMGCS2, FGF21) were elevated in the liver of lactating compared to non-lactating sows (P < 0.05). In addition, transcript levels of genes involved in carnitine synthesis (ALDH9A1, TMLHE, BBOX1) and carnitine uptake (SLC22A5) in the liver were greater in lactating than in non-lactating sows (P < 0.05). Carnitine concentrations in liver and plasma were about 20% and 50%, respectively, lower in lactating than in non-lactating sows (P < 0.05), which is likely due to an increased loss of carnitine via the milk. CONCLUSIONS: The results of the present study show that PPARα is activated in the liver of sows during lactation which leads to an up-regulation of genes involved in carnitine synthesis and carnitine uptake. The PPARα mediated up-regulation of genes involved in carnitine synthesis and uptake in the liver of lactating sows may be regarded as an adaptive mechanism to maintain hepatic carnitine levels at a level sufficient to transport excessive amounts of fatty acids into the mitochondrion.


Subject(s)
Carnitine/biosynthesis , Carnitine/metabolism , Lactation/physiology , Swine/genetics , Up-Regulation/physiology , Animals , Biological Transport/genetics , Biological Transport/physiology , Female , Lactation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...